ADA PINPOINT TOPIC PACKS

- (1) The Equation of a Line (1 Qns)
- (2) Equation of a Line from a Graph (0 Qns)
- (3)Understanding Lines and Gradients (9 Qns)
- (4) Gradient Problems (2 Qns)
- (5)Straight Lines and Shape Problems (1 Qns)

52_to_100_Percent_Pinpoint_AI_Pack

Time Allocation = 56mins, Max = 49 Marks

Calculated Grade Boundaries:

Grade	Marks
5	4
5 5+ 6- 6	7
6-	11
6	14
6+	18
6+ 7- 7	21
7	25
7+ 8-	28
8-	32 35
8	35
8+	39
8+ 9- 9	42 46 49
9	46
9+	49

Question 1 (AO3): 43% of students got this right (3 marks)

1.	A is the point with coordinates (2, 10) B is the point with coordinates (5, d)	
	The gradient of the line AB is 4	
	Work out the value of d .	
		<i>d</i> =
		(Total for Question 1 is 3 marks)

Question 2 (AO2): 39% of students got this right (3 marks)

The graph shows the depth, d cm, of water in a tank after t seconds.

(a) Find the gradient of this graph.

	(2)
(b) Explain what this gradient represents.	
	(1)
	(Total for Question 10 is 3 marks)

Question 3 (AO2): 31% of students got this right (4 marks)

- 13. The points A(6, 1) and B(-2, 5) are on the line with equation $y = -\frac{1}{2}x + 4$ M is the midpoint of AB.
 - Find an equation of the line through *M* that is perpendicular to $y = -\frac{1}{2}x + 4$

(Total 4 marks)

Question 4 (AO2): 29% of students got this right (3 marks)

19. **A** and **B** are straight lines. Line **A** has equation 2y = 3x + 8. Line **B** goes through the points (-1, 2) and (2, 8).

Do lines **A** and **B** intersect? You must show all your working.

(Total 3 marks)

Question 5 (AO1): (No Calc) 29% of students got this right (3 marks)

2 b

Deliveries cost y for x miles.

The graph gives the values of y for values of x from 0 to 5.

(b) Write the equation of the straight line in the form y = m x + c

.....

(3)

Question 6 (AO1): 27% of students got this right (3 marks)

20. The line N is drawn below.

Find an equation of the line perpendicular to line N that passes through the point (0, 1).

••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				•	•	•	•	•	•	•
																			(l		()	1	t	E	ı	l		3	3		ľ	1	1	l	a	1	ľ	•	ŀ		•	5)

Question 7 (AO2): (No Calc) 21% of students got this right (4 marks)

A is the point with coordinates (1, 3).
B is the point with coordinates (4, -1).
The straight line L goes through both A and B.

Is the line with equation 2y = 3x - 4 perpendicular to line L? You must show how you got your answer.

(Total 4 marks)

Question 8 (AO1): (No Calc) 18% of students got this right (4 marks)

20.

In the diagram

A is the point (-2, 0)

B is the point (0, 4)

C is the point (5, -1)

Find an equation of the line that passes through C and is perpendicular to AB.

Question 9 (AO2): 18% of students got this right (5 marks)

18.

In the diagram, ABC is the line with equation

$$y = -\frac{1}{2}x + 5$$

AB = BC

D is the point with coordinates (-13, 0).

Find an equation of the line through *A* and *D*.

Question 10 (AO3): 16% of students got this right (4 marks)

19 A triangle has vertices P, Q and R.

The coordinates of P are (-3, -6)

The coordinates of Q are (1, 4)

The coordinates of R are (5, -2)

M is the midpoint of PQ.

N is the midpoint of QR.

Prove that MN is parallel to PR.

You must show each stage of your working.

Question 11 (AO3): (No Calc) 15% of students got this right (4 marks)

18

ABCD is a rhombus.

The coordinates of A are (5,11)

The equation of the diagonal *DB* is $y = \frac{1}{2}x + 6$

Find an equation of the diagonal AC.

.....

(Total for Question 18 is 4 marks)

Question 12 (AO3): (No Calc) 14% of students got this right (4 marks)

21.	A has coordinates $(-3, 0)$
	B has coordinates (1, 6)
	C has coordinates (5, 2)
	Find an equation of the line that passes through C and is perpendicular to AB .
	Give your equation in the form $ax + by = c$ where a , b and c are integers.
	(Total 4 marks)

Question 13 (AO3): 9% of students got this right (5 marks)

19 A has coordinates (-9, 7)B has coordinates (11, 12)

M is the point on the line segment AB such that AM : MB = 2 : 3

Line L is perpendicular to the line segment AB. L passes through M.

Find an equation of L.

Answers to Qn 1 (AO3): 43% of students got this right

Question	Working	Answer	Mark	Notes
1		22	P1	Process to use gradient, e.g. $\frac{d-10}{5-2} = 4$
			P1	for a complete process to rearrange equation formed to isolate d
			A1	cao

Answers to Qn 2 (AO2): 39% of students got this right

Paper 1MA	A1: 2H		
Question	Working	Answer	Notes
10 a		-1.5	M1 for method to find A1 gradient, eg. 210 ÷ 140 for correct interpretation of
b			for correct interpretation of the negative gradient
			for explanation, eg. rate of change of depth of water in tank
			rnings Automatic Differentiation Algorith

Answers to Qn 3 (AO2): 31% of students got this right

13.		y = 2x - 1	4	M1 for $\left(\frac{6+-2}{2}, \frac{1+5}{2}\right)$ oe
				M1 for $\frac{-1}{0.5}$ oe (= 2)
				M1(dep on previous M1) for using $y = 2x + c$ with their coordinates for the midpoint used correctly to find c
				A1 for $y = 2x - 1$ oe

Answers to Qn 4 (AO2): 29% of students got this right

19.	Yes with	3	M1 For Line A : writes equation as $y = 1.5x + 4$ or gives the gradient as 1.5 or constant term of 4
	explanation		the gradient as 1.3 or constant term of 4
			OR for Line B : shows a method which could lead to
			finding the gradient or gives the gradient as 2 or constant term of 4 or calculates a sequence of points including $(0,4)$ or writes equation of line as $y = 2x + 4$
			M1 Shows correct aspects relating to an aspect of Line A
			and an aspect of Line B that enables some comparison to be made e.g. gradients, equations or points.
			C1 for gradients 1.5 and 2 and Yes with explanation that the gradients are different or states the lines intersect at
			(0,4) or explanation that interprets common constant term (4) from equations
			OR
			M1 for a diagram that shows both lines drawn and intersecting at (0,4)
			M1 for a diagram that shows both lines and their intersection point identified as (0,4)
			C1 for Yes and states the intersection point as (0,4)

Answers to Qn 5 (AO1): (No Calc) 29% of students got this right

2 b

Deliveries cost y for x miles.

The graph gives the values of y for values of x from 0 to 5.

(b) Write the equation of the straight line in the form y = m x + c

Gradient:
$$m = \frac{change in y}{change in x} = \frac{1.5}{1} = 1.5$$

Equation:
$$y = 1.5x + 0.5$$

(3)

Answers to Qn 6 (AO1): 27% of students got this right

Ques	stion	Working	Answer	Mark	Notes
20		Gradient of N = 3 Gradient of perpendicular to	$y = -\frac{1}{3}x + 1$	3	M1 for complete method to find gradient of line N or for drawing a perpendicular line
		line N = $-\frac{1}{3}$			M1 for method to find the gradient of a perpendicular line
					A1 $y = -\frac{1}{3}x + 1$ oe
		Quantian Order Create	d by Dinnoin	Lograina	To Automatic Differentiation Algorithm
		Question Order Create	u by Piripoint	Learning	s Automatic Differentiation Algorithm

Answers to Qn 7 (AO2): (No Calc) 21% of students got this right

Questi	ion Working	Answer	Mark	Notes
21.	$2y = 3x - 4$ $y = \frac{3}{2}x - 2; m = \frac{3}{2}$ $\frac{3 - 1}{1 - 4} = -\frac{4}{3}$ $\frac{3}{2} \times -\frac{4}{3} = -2$	No, with reason	4	M1 for $\frac{3}{2}$ oe or $y = \frac{3}{2}x\left(-\frac{4}{2}\right)$ oe M1 for method to find gradient of AB , e.g. $\frac{31}{1-4}$ or $\frac{-1-3}{4-1}$ or $-\frac{4}{3}$ oe A1 for identifying gradients as $\frac{3}{2}$ oe and $-\frac{4}{3}$ oe C1 (dep on M1) for a conclusion with a correct reason, e.g. No, as product of $\frac{3}{2}$ and $-\frac{4}{3}$ is not -1 , ft (from their two gradients)

Answers to Qn 8 (AO1): (No Calc) 18% of students got this right

Questio	n Working	Answer	Mark	Notes
20.	Gradient of $AB = 2$	$y = -\frac{1}{2}x + \frac{3}{2}$	4	M1 for attempt to find gradient of
	Gradient of perpendicular line			AB
	$=-\frac{1}{2}$			M1 (dep) for attempt to find gradient of perpendicular line eg use of $-1/m$
	$y = -\frac{1}{2}x + c$ $-1 = -\frac{1}{2} \times 5 + c$			M1(dep on M2) for substitution of $x = 5$, $y = -1$
	$c = \frac{3}{2} \times 3 + c$			A1 for $y = -\frac{1}{2}x + \frac{3}{2}$ oe
	2			
	Question Order Create	ed by Pinpoint Lea	rnings A	utomatic Differentiation Algorithmn

Answers to Qn 9 (AO2): 18% of students got this right

18.	$y = \frac{10}{3}x + \frac{130}{3}$	5	B1 for stating B as $(0, 5)$ or $OB = 5$ (could be written on the diagram)
			B1 for C as (10, 0) or $OC = 10$ (could be written on the diagram) or A is (-10, 10) or ft from their BC
			M1 gradient of $DA = \frac{10}{3}$ or $y = \frac{10}{3}x + c$
			M1 for substitution of $x = -13$, $y = 0$ or $x = -10$, $y = 10$ in their equation
			A1 $y = \frac{10}{3}x + \frac{130}{3}$ oe

Answers to Qn 10 (AO3): 16% of students got this right

Paper: 1MA	Paper: 1MA1/2H					
Question	Working	Answer	Mark	Notes		
19		Proof (supported)	M1	for a method to find coordinates of $M(-1, -1)$ or $N(3, 1)$		
			M1	for method to find gradient of MN or PR		
				or for method to find column vector for MN or PR		
				or for differences of <i>x</i> coordinates and differences of <i>y</i> coordinates for <i>MN</i> or <i>PR</i>		
			A1	for gradients of MN and PR , ie ½ oe or for column vectors of MN and PR , \overline{MN} $= \binom{4}{2} \text{ and } \overline{PR} = \binom{8}{4}$ or for differences of x coordinates and of y coordinates for MN and PR		
			C1	for conclusion from reasoning and correct working		

Answers to Qn 11 (AO3): (No Calc) 15% of students got this right

Question 18 (Total 2 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
	Gradient of $DB = \frac{1}{2}$	P1	This mark is given for finding the gradient of the line DB
	Gradient of $AC = -\frac{1}{\frac{1}{2}} = -2$, so equation for AC is $y = -2x + c$	P1	This mark is given for understanding that the line AC is perpendicular to DB and using $-\frac{1}{m}$ to find its gradient
	11 = -10 + c $c = 21$	P1	This mark is given for substituting the values for the coordinates of A ($x = 5$ and $y = 11$) into $y = -2x + c$ to find the value of c
	y = -2x + 21	A1	This mark is given for the correct answer only

Answers to Qn 12 (AO3): (No Calc) 14% of students got this right

		M1 for method to find gradient of AB, e.g.
21.		$4 \qquad \boxed{\frac{6-0}{13} \left(=\frac{3}{2}\right)}$
		M1 for method to find gradient of line, e.g.
		$-1 \div \frac{3}{2} \left(= -\frac{2}{3} \right)$
		M1 for method to find y intercept, e.g. $2 = -\frac{2}{3} \times 5 + \frac{2}{3} \times 5$
		$c \text{ or } c = \frac{16}{3}$
	$\begin{vmatrix} 3y + 2x \\ = 16 \end{vmatrix}$	A1

Answers to Qn 13 (AO3): 9% of students got this right

19 A has coordinates (-9, 7)B has coordinates (11, 12)

M is the point on the line segment AB such that AM : MB = 2 : 3

Line L is perpendicular to the line segment *AB*. L passes through *M*.

Find an equation of L.

Gradient of AB:
$$\frac{12-7}{11-(-9)} = \frac{5}{20} = \frac{1}{4}$$

Gradient of L: m = -4

M:
$$\left(-9 + \frac{2}{5} \times 20, 7 + \frac{2}{5} \times 5\right) = (-1.9)$$

Equation of L: y = -4x + c

$$(-1,9) \rightarrow 9 = -4 \times (-1) + c$$

 $c = 5$

Equation of L:
$$y = -4x + 5$$

.....

(Total for Question 19 is 5 marks)